熱氣泡致動器於微流體生醫晶片 之應用

Applications of Thermal Bubble Powered Microactuator in Microfluidic Biochips

鄒慶福、黄正翰、曾可欣 Ching-Fu Tsou, Cheng-Han Huang, Keh-Sin Tseng

微流體晶片已廣泛地應用在生物醫學檢測,其概念是將傳統的大型檢驗機構縮小至單一晶片,使其具有篩選、分離及輸送等功能,同時透過微量檢體即可達成檢測需求,且能有效縮短檢驗時程。有鑑於此,本文提出一種多功能熱氣泡驅動微流體晶片製作技術,即利用微機電製程在矽晶片上直接製作出微流道、電阻式微加熱器以及儲存槽等元件,並透過塊狀的微加熱器產生熱氣泡的致動方式,應用在微珠結構的分離過程。本研究開發的技術具有簡易的製程優勢,只需兩道光罩即可在晶片上同時完成微流道、微閥門、微幫浦以及微混合器等元件結構;此外,利用熱氣泡的驅動方式可以有效地改變流體的流場行為,進而操控特定尺寸的單一微珠進入預設的儲存槽,預期未來該技術可應用在單一生物體之分離與篩選,如羊水中的活性細胞。

Microfluidic chips have been widely used in biomedical applications such as detecting chemical reactions and biological features. The miniaturized system significantly reduces traditional feature sizes and improves complex apparatus to a chip; also including screening, separating, and transmitting functions. They require few samples to accomplish bio-analysis and effectively shorten the cycle time. In this work, we present the implementation of a thermal bubble actuated microfluidic chip with microvalve, micropump and micromixer for microparticle separation, based on a simple process with SOI wafer. Only two photolithography processes were required to provide an effective means of manufacturing the bulk microheater and high-aspect-ratio microchannel for microfluidic applications. The feasibility of a thermal bubble pumping fluid to manipulate a microbead with a diameter of $20~\mu m$ has also been verified by experiments. It is expected that the proposed microfluidic chip can be applied for the separation of cells, such as live cells in amniotic fluid.

一、前言

隨著科技的進步以及預防勝於治療的觀念加 持,醫學檢驗在整體醫療上已扮演著極為重要的角 色,因此生醫晶片檢測系統及其製造技術也開始受 到重視,尤其在系統化的微小生醫晶片上,只要透 過微量檢體即可達成檢測需求,同時有效的縮短檢 驗時程,並提升分析能力,因此也逐漸發展成具有 跨領域且需要高度專業整合能力的一種顯學^(1,2)。 近年來,為了滿足多功能生醫晶片的要求,已有越來越多的研究針對微流體晶片的關鍵元件進行開發,例如有學者提出創新的紙張型微流體分析架構 (µPADs),其做法是透過列印技術直接將微流道結構製作在紙張上,並藉由紙張本身的多孔結構及毛細現象達到驅動液體的目的,未來可應用於血液分離、液體循環以及微流體開關等功能⁽³⁾;另外,也有研究團隊直接整合微幫浦、微閥門以及微混合器等各式元件於單一晶片,並應用於聚合脢連鎖反應(polymerase chain reaction, PCR)、或是當作一個生醫檢測平台^(4,5)。由上述相關研究可觀察出,整合型多功能生醫晶片已是未來的一個發展趨勢,關鍵就在於積體化的微元件整合技術,有助於提升流體在微型化晶片的傳輸效益。

另一方面,由於微製程技術能力不斷的提升,目前多數的生醫晶片大都透過微機電系統 (micro electro mechanical systems, MEMS) 技術製作出客製化的多功能微元件,如微閥門、微幫浦,以及微混合器等。其中,微閥門的機構設計主要區分為主動式以及被動式,前者主要是透過可移動的結構,例如熱變形、壓電、靜電以及電磁等微致動器進行液體的流量控制;後者則是透過微結構的幾何設計,使其在不消耗任何能量下改變液體的流場特性,然而此方式受限於元件的操作特性以及製程的複雜度,且只能控制流體具有單向的運動特性,因此無法廣泛地應用在微流體的操控⁽⁶⁾。

在微幫浦的元件開發方面,受限於平面微製程的堆疊架構,其產生的驅動效益較低,因此目前的微流體系統大都透過外部動力的傳輸方式推動液體,唯在系統整合上仍然較為繁雜且製作昂貴。其中,微幫浦的驅動方式主要區分為兩種,分別為具有可動元件之機械式微幫浦^(7,8)以及無可動元件之非機械式微幫浦^(9,10),前者主要是利用壓電、氣動以及熱動的驅動模式進行流體的傳輸,後者則是透過超音波、熱氣泡以及表面張力或是毛細現象等作用力。其中,上述的微幫浦驅動又以熱氣泡式最具代表性,不但具有較大的輸出力量,且透過電壓的調變可輕易地控制輸出性能,同時無可動件的特性可確保高可靠度以及高疲勞壽命。

此外,微混合器在微流體系統中亦扮演著不可或缺的角色,尤其流體在微流道中的雷諾數相當低,具有層流的異質流體已經無法藉由濃度的差異以及分子間的擴散作用達到混合的目的,因此必須藉由外部能量的擾動方式提高混合效果,例如利用脈衝式的超距力能量,可以有效地干擾液體的流場型態(11,12),另一種方式則是透過流道幾何形狀的差異,間接影響液體的流場擾動,使其產生局部的混合效果(13,14)。

經由上述相關文獻的探討,顯示現有的微流體系統架構對於流體的操控能力已越來越成熟,然而目前多數晶片仍只針對單一或部份控制元件進行開發,若要全程的執行檢測過程,仍然必須仰賴外部儀器的輔助,因此在系統整合或檢測操作上仍然較為複雜;另一方面,為了提升各元件在微流體系統中的操作性能,大都利用不同的致動方法控制液體的流場行為,但是其製作過程較為繁複且耗時。因此為了改善目前微流體晶片所面臨的問題,本研究提出一個高可靠度、高整合性以及具有簡單製程之熱氣泡式多功能微流體晶片,期望透過微加熱器產生的熱氣泡致動方式,使其具有微閥門、微幫浦以及微混合器的功能,並有效地控制異質微流體的傳輸及混合效能。

另一方面,在生醫檢測實務上,一般對於群體 細胞的分離做法,多半依靠操作者的經驗與技巧, 並且需要多量的檢測樣品以及反覆的操作,因此在 檢測過程中,樣品容易受到污染,進而影響檢驗結 果的準確性(15)。舉例來說,目前政府正在大力推 行 34 歲以上的高齡孕婦,於妊娠 16 至 20 週時必 須接受腹部羊膜穿刺檢查,並抽取大約 20 ml 的羊 水,以判斷胎兒是否罹患唐氏症 (Down Syndrome) 或是染色體異常等等,然而活性細胞的培養與染色 體的檢驗時程,通常必須花費2至4週後才能得 到檢驗結果。此外,活性細胞只占羊水細胞中的 3%,過多的死細胞也會影響羊水細胞培養的成功 率,因此若能在大量的檢體中分離出單一活性細胞 體並進行複製培養,同時在不破壞細胞本體或造成 細胞本質改變的情況下,便可提高檢測的正確性以 及縮短檢測時程,進而有利於後續醫師對於胎兒的 臨床診治(16)。因此,基於細胞分離在生醫檢測上

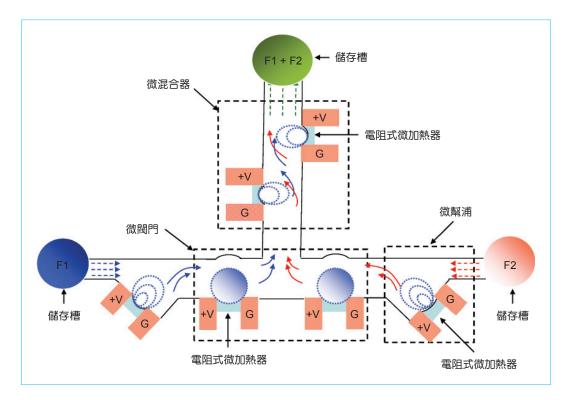


圖 1. 熱氣泡式多功能微 流體晶片示意圖。

的重要性,本研究亦根據熱氣泡致動微流體晶片之 架構,透過適當的微流道與微加熱器的配置,使其 滿足生物樣品的分離與篩選需求。初期的實驗過程 是以特定尺寸的微珠當作檢測樣本,預期未來可應 用於微米等級之單一細胞的分離與篩檢。

二、多功能熱氣泡致動微流體晶片

1. 設計概念

熱氣泡式多功能微流體晶片的設計概念,主要是利用數個微加熱器分別產生熱氣泡的致動方式,在同一晶片上分別完成微閥門、微幫浦及微混合器的功能,如圖1所示為本研究開發的微流體晶片示意圖。其中,以倒T字形結構為主的微流道共配置三個儲存槽,其中位於晶片下方的兩端儲存槽,主要是用於提供異質性液體(F1及F2)的暫存空間,位於上方端點之儲存槽,則是用來收集混合後之液體(F1+F2)。在微加熱器配置方面,兩個微閥門的位置主要是設計在下方微流道的單一側邊,因此透過電壓的適當調變,可控制微加熱器的溫度,並使熱氣泡成長在特定的尺寸,進而控制流經閥門區域的液體流量;至於微幫浦設計在晶片下方

的兩端流道入口處,主要是藉由熱氣泡連續成長的高頻動態特性,使其達到驅動液體以及快速傳輸的功能,因此若能穩定的控制熱氣泡的成長頻率,即可有效地控制兩端的入口流速。其中,將微加熱器設計在三角形空間的 45° 斜角位置,有助於將熱氣泡的推動力量傳導至主流道,以提升驅動效能;最後,當兩液體進入混合區域後,可分別利用靜態或動態的熱氣泡操控方式,針對液體進行主動或被動的流場擾動,如同在微流道中形成一個固狀結構或可動元件的流場干擾機制,進而提升異質流體的混合效益。

至於矽質微加熱器的結構設計如圖 2 所示,其製作方式可利用微機電系統的體型微加工技術於矽基板與二氧化矽絕緣層上方的矽結構層製作出一個拱型式的塊狀微加熱器、高深寬比微流道以及兩個獨立金屬電極板。因此,當電壓施加在兩端電極 (+V 和 G) 時,具有高阻值的矽結構體,在電一熱耦合的作用情況下,大部分的電能便會消耗在拱型微結構,並轉為熱能輸出,如圖 3 所示為利用有限單元法 (ANSYS) 模擬軟體,分析微加熱器(長度、邊界寬度 W1 及窄部寬度 W2 分別為 100、50 以及 20 μm) 在施加電壓 4V 情況下的溫度分佈

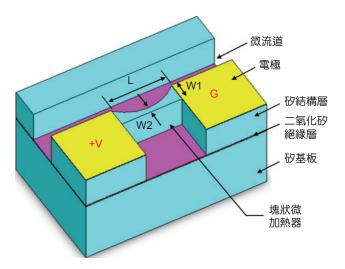


圖 2. 塊狀式矽微加熱器之 3D 結構圖。

結果,該結果顯示最高溫度產生在最小的截面積位置,其值約為114°C。因此,當液體流經加熱器,且受熱的溫度超過其沸點時,加熱器表面的最高溫區域便開始產生熱氣泡,並隨著輸入電能的變化,而產生不同的作動機制,之後只要透過輸入電壓的大小、頻率及時脈的控制,便可使熱氣泡致動器適用在微閥門、微幫浦及微混合器的功能需求⁽¹⁷⁾。

2. 元件製作

圖 4 所示即為微流體晶片的製作流程。首先,

以結構層厚度為 $50 \, \mu m$ 及其阻值為 $0.0002 \, \Omega$ -m 的 SOI (silicon on insulator) 晶片為基材,如圖 4(a) 所示;接著利用第一道光罩及微影製程,沉積 $1 \, \mu m$ 的鋁膜,並以舉離 (lift-off) 的製程方式製作金屬電極,如圖 4(b) 所示;之後利用第二道光罩定義微流道及各加熱器區域,並透過感應式耦合電漿 (ICP) 乾蝕刻技術,同時製作出微流道及微加熱器結構,如圖 4(c) 與 (d) 所示,進而完成整個晶片的製作。其中,上述 SOI-MEMS 製程所製造的微加熱器之電-熱耦合效能,可以藉由結構層的幾何與阻值大小的匹配,進行優化的設計。

典型的多功能微流體晶片製程結果如圖 5(a) 所示,至於圖 5(b) 至 (d) 為各部位的電子顯微鏡影像圖,分別為應用在微幫浦、微閥門及微混合器之微加熱器結構。其中,微流道的寬度約為 100μm,加熱板的長度、邊界寬度以及頸部寬度則分別為 100、40 及 20μm,該製程結果與光罩定義的尺寸並無明顯的差異。

3. 實驗與量測

(1) 微加熱器效能

根據紅外線熱像儀的量測結果,微加熱器在不同的電壓情況下之溫度分布情形如圖 6 所示,其中圖 6(a) 與 6(b) 分別為微流道含純水以及不含純水



圖 3. 典型的微加熱器在電壓 4 V 情 況下之溫度分佈圖。

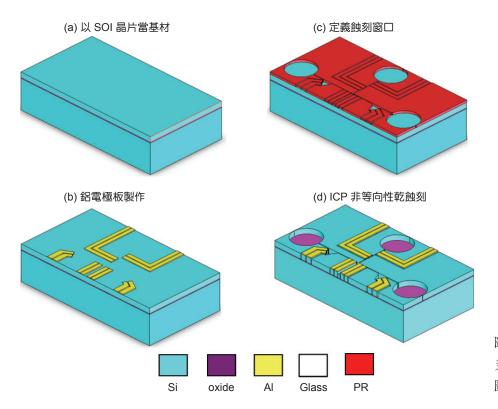


圖 4. 多功能微流體晶片的製作流程 圖。

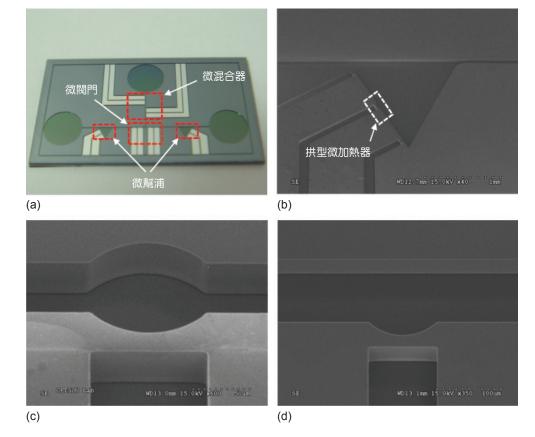
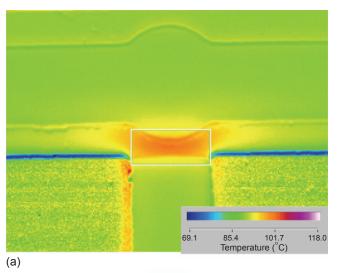
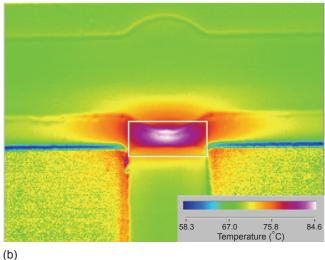
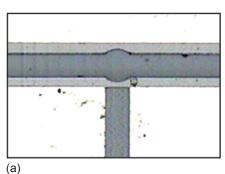
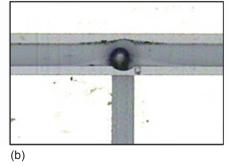



圖 5.
(a) 整個微流體晶片的製程結果以及 (b) 微幫浦、(c) 微閥門和 (d) 微混合器之電子顯微鏡影像圖。


圖 6. 在施加電壓 4 V 條件下,典型的微加熱器之溫度分佈結果: (a) 無注入純水,(b) 有注入純水。

的情況下,在輸入電壓為 4 V 時之溫度分佈圖,該結果顯示微流道中在無水以及有水的情況下,微加熱器的最高溫均會產生在截面積最小處,即拱型結構的中間區域,其值分別約為 118 °C 及 85 °C。另一方面,在有水的情況下,當施加電壓超過 5 V 時,加熱器的最高溫即可超過 100 °C,此時開始有氣泡核的產生;之後,隨著施加電壓的持續增加,熱氣泡便開始穩定成長且具有快速的動態響應,其原因在於塊狀的微加熱結構可累積大量的熱能,同時矽基材具有良好的導熱特性,因此相較一般的薄膜加熱器而言,本研究設計的塊狀微加熱器可提供較為穩定的熱氣泡成長機制。

(2) 微閥門

微閥門的作動機制主要是藉由熱氣泡的大小窄 化流道的寬度,以達到調節流體的流速或流量。因 此,只要根據微加熱器結構的電-熱能量轉換特 性,透過不同的電壓控制熱氣泡的直徑,便能有效 地滿足微閥門的功能需求。圖7所示即為微加熱器 在不同的施加電壓情況下,熱氣泡的尺寸變化情 形。其中,在未施加電壓之前,純水在微流道中的 流速控制在 4.5 ul/s,如圖 7(a) 所示,此時熱氣泡 尚未成核;隨著施加電壓慢慢增加至約6V時,熱 氣泡亦開始成長,在穩態下,其直徑大小約 90 μm (約 90% 的微流道寬度),如圖 7(b) 所示;當電壓 持續增加至大約8V時,可發現熱氣泡已完全堵塞 微流道,如圖 7(c) 所示。其中,根據微閥門作動 時間的量測結果顯示,當施加直流電壓8V在微加 熱器時,熱氣泡從初始狀態至完全堵塞整個微流道 的寬度,所花費的時間大約是6秒鐘,一旦熱氣泡 的內部壓力受到液體壓力的擠壓而產生破裂,亦可 在 0.3 秒的極短時間內重新成形。

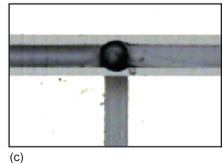


圖 7. 熱氣泡形態隨電壓值的變化情形: (a) 0 V, (b) 6 V, (c) 8 V。

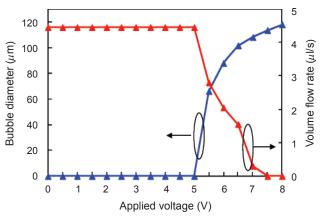


圖 8. 熱氣泡尺寸及液體流速隨施加電壓的變化情形。

根據上述的實驗結果,熱氣泡的直徑與流速隨施加電壓的變化情形如圖 8 所示。由該圖可清楚地發現到,隨著施加電壓的逐漸提升,熱氣泡的直徑會呈現非線性的成長趨勢,相對的,液體流速即會呈現反向之趨勢。例如,當熱氣泡尚未形成時,液體的初始流速大約為 $4.5~\mu l/s$; 之後,隨著熱氣泡的直徑成長至 $60~\mu m$ (約 55% 的微流道寬度) 時,此時流速大約降至 $2.5~\mu l/s$ (約 55% 的初始流速);當熱氣泡的直徑隨著電壓的提升而逐漸成長至可以

完全堵塞微流道時,即可成功地阻斷液體流動,並 達到完全閥門的控制功能。因此,利用塊狀微加熱 器產生的熱氣泡,具有高穩定性及高可靠度的微閥 門操作特性。

(3) 微幫浦

微幫浦是利用熱氣泡具有重複且快速成長的特性,藉由不斷的推擠液體,以達到驅動流體為目的。為了驗證微幫浦的驅動效益,本實驗將探討液體的流速在不同的操作頻率與工作週期 (duty cycle) 下的變化情形。其中,根據先前的量測結果顯示,當施加電壓大於 12 V 時,熱氣泡會開始產生破裂。因此為了觀察熱氣泡的重複成長特性以及破裂過程的驅動形態,將施加 12.5 V 的直流連續方波訊號在加熱器上,並觀察微幫浦在三種不同工作週期 (10%、30% 以及 50%) 以及在不同的驅動頻率下之流速變化。圖 9(a) 至 (d) 即顯示電壓頻率為 60 Hz 以及工作週期為 30% 的情況下之熱氣泡成長過程,其中當施加電壓時間在 100 μs 時,熱氣泡成長的直徑大約為 70 μm,如圖 9(a) 所示;隨著施加電壓的持續增加,微加熱器的狹窄區域因

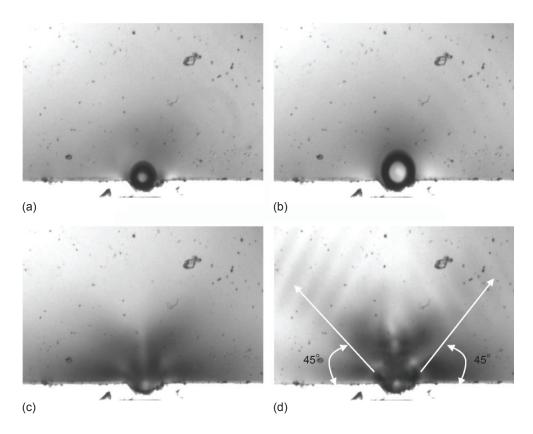


圖 9. 熱氣泡在不同的時間驅動下之成長過程: (a) 100 μs, (b) 200 μs, (c) 300 μs, (d) 400 μs。

溫度的累積,使得熱氣泡的直徑亦隨之增大到約100 µm,如圖9(b)所示;當施加電壓時間在300 µs時,熱氣泡即產生破裂現象,如圖9(c)所示;此時若持續增加電壓,熱氣泡將可在相當短的時間(小於100 µs)之內重新成長,如圖9(d)所示。由圖9(a)至(d)也可明顯地看出液體在熱氣泡驅動過程中的波紋變化,其中圖9(d)可清楚地觀察出,其震波的傳遞方向約在45°,因此將加熱器設計在微流道45°斜角的位置,有助於提升微幫浦的驅動效能。

圖 10 為在不同工作週期下,流速隨驅動頻率的變化情形。該結果顯示,在輸入頻率為 60 Hz 以及工作週期為 30% 的條件下可產生最大的驅動效能,其最高流速可達 4.5 µl/s;至於工作週期在10% 以及 50% 的情況下,最大的流速則分別發生在驅動頻率為 20 與 80 Hz 左右。其中,以 30% 的工作週期為例,當輸入頻率大於 60 Hz 情況下,流速會開始隨著頻率的增加而減少,其原因在於過高的操作頻率,無法使微加熱器累積足夠的熱量,並產生較大的氣泡,因此熱氣泡在重複的成長與破裂過程中,無法產生較大的體積變化量,進而造成較低的驅動效益。

(4) 微混合器

為了觀察熱氣泡在不同尺寸下對層流液體的擾 動特性,首先將兩種異質性的液體分別注入晶片下

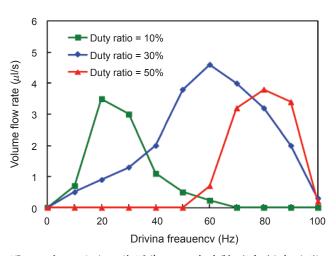


圖 10. 在不同的工作週期下,流速隨致動頻率的變化情形。

方的兩端儲存槽,經由液體與微流道之間的毛細現象,使其以層流的方式通過垂直方向的微流道,並且透過壓力差的方式,使液體之流速穩定的控制在4.0 μl/s 左右,最後再流入上方的出口端。因此,當尚未施加任何電壓,即熱氣泡尚未產生時,兩個液體仍以層流方式進行流動,如圖 11(a) 所示;當施加電壓增加至大約5.3 V,即熱氣泡的直徑成長至大約50 μm 時,此時原本以層流流動之液體,開始在熱氣泡周圍產生擾動,如圖 11(b) 所示;隨著電壓增加至5.8 V 時,熱氣泡的直徑也增大至70 μm 左右,此時液體的擾動效應又更加明顯,如圖 11(c) 所示。

至於混流特性的量化評估,可透過圖 11(a) 至 (c) 所標示之 AA'、BB'和 CC'等截面,即在加熱器後方距離大約 100 μm 左右的位置,藉由分析混流後的顏色之灰階比值判斷其混合效果。因此,將上述量測的灰階值差異量標準化之後,其相對的混流效能如圖 12 所示。該結果顯示,熱氣泡的直徑

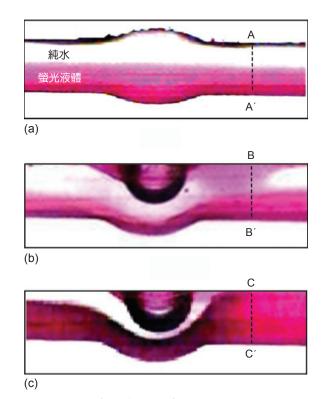


圖 11. 兩種異質性層流液體在不同尺寸之熱氣泡作 用下的混流結果: (a) 無熱氣泡產生, (b) 直 徑為 50 μm, (c) 直徑為 70 μm。

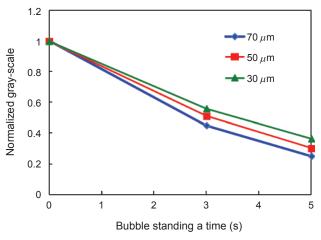


圖 12. 異質性液體的灰階比值隨熱氣泡直徑變化的 量測結果。

越大,混流效果越好,原因在於熱氣泡的體積越大,影響層流的區域也越多,且在縮短微流道截面積的同時,也間接地影響液體的流速,並增加擾動

效應,因此可以改變液體的穩態流場行為。

綜合上述的實驗結果顯示,利用熱氣泡致動方式可以完成微流體晶片所需的微閥門、微幫浦以及 微混合器等功能。未來只要透過優化的元件設計與 不同的操作模式,便可精確的調節各類液體的流速或流量,以滿足不同的生醫檢測晶片之需求。

三、具有單體分離與篩選之生醫晶片

1. 設計架構

基於上述開發的多功能生醫晶片之操作模式, 具有檢體分離與篩選功能之生醫晶片的設計如圖 13(a) 所示,左上方為具有尺寸篩選功能之晶片, 其剖面結構如圖 13(b) 所示,其中微貫穿孔的設計 主要是讓小尺寸的樣本可以隨著液體的流動進入下 方分離晶片的暫存槽;之後,透過液體自然流動的 方式與適當的引流道設計,具有特定尺寸之樣本便

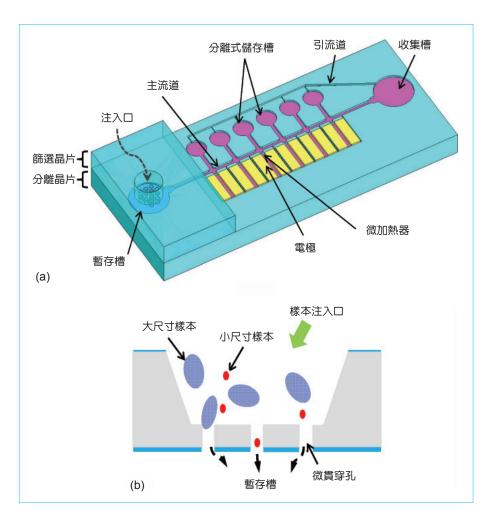
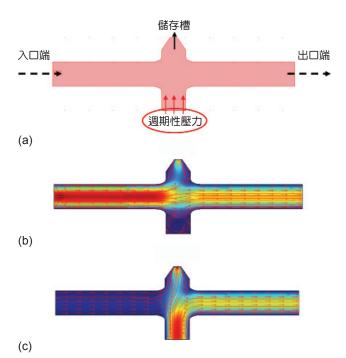


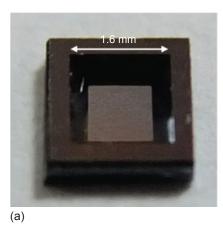
圖 13.

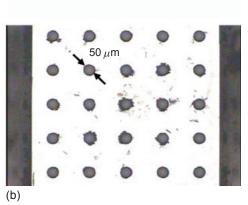
- (a) 應用於檢體分離與篩選之 生醫檢測晶片結構示意圖及其
- (b) 篩選晶片之剖面示意圖。

會隨著液體進入主流道,並在微流道的毛細作用之下,以層流的方式流入收集槽,如圖 14 所示為利用商用的微流體分析軟體 (COMCOL),模擬具有層流特性之微流體在微流道內的流動情形,其中圖 14(a) 為建立之 2D 模型。圖 14(b) 的模擬結果即顯示出,在無外加的壓力作用下,入口端之液體會順著主流道的方向往出口端流動,僅有少部分的邊界層流體流向垂直交錯的引流道。然而,當液體流經主流道的過程中,一旦觀察到特定尺寸的單一檢測樣本接近特定的分離式儲存槽時,便可施加電壓在對應的微加熱器上,使其產生連續的熱氣泡,進而迫使流體改變流動的方向,如圖 14(c) 的模擬結果所示,由於大部分的液體受到周期性的壓力驅動會產生流向的改變,因此可順勢的將檢測樣本推至儲存槽,以完成單體分離與篩選的功能。

為了驗證生醫晶片之實用性,本研究開發的結構設計與檢測樣品的規格將以羊水當作參考目標,並透過不同尺寸的微珠取代羊水中的死細胞以及活性細胞。其中,具有活性羊水細胞的外觀呈現圓球狀,尺寸約為 25 至 30 μ m,至於非活性細胞的尺寸則大於 50 μ m,且外觀呈現不規則狀(5)。因此,後續的實驗將以直徑分別為 20 μ m 及 60 μ m 的微珠,在特定的混合比例 (1:20) 情況下,取代羊水中的活性細胞以及死細胞,並以純水取代羊水液體。另外,為了避免微加熱器在操作時的高溫影響檢測樣本的物性,其配置會做某種程度的退縮,即根據有限單元法的模擬結果,當微加熱器與主流道的距離大於 200 μ m 時,在施加特定責任週期 (小於 50%) 的電壓 (12 伏特) 情況下,主流道的溫度會小於 40 °C,因此可以有效的改善熱效應。




圖 14. 分析流場變化所建立之模型示意圖及其模擬結果: (a) 流道設計形式及作用力施加情况,(b) 無外在壓力作用,(c) 施加特定的壓力在垂直流道的下方。


2. 實驗結果與討論

根據上述的分離機制與先前圖 4 的製程規劃,經由微機電技術分別完成的檢體篩選與分離晶片如圖 15 與圖 16 所示,其中圖 15 的篩選晶片是透過兩道的非等向性濕蝕刻與乾蝕刻製作完成,切割後的整個平面尺寸約 $2 \times 2 \text{ mm}^2$,所有貫穿孔的尺寸均為 $50 \, \mu \text{m}$;至於圖 16 顯示之分離晶片的大小則為 $1.4 \times 4.2 \, \text{cm}^2$,主要結構包含暫存槽、主流道、收集槽、三個微加熱器及其對應的三個分離式儲存

(a) 整個篩選晶片的製造結果 及其 (b) 底部具有微貫穿孔之 光學影像圖。

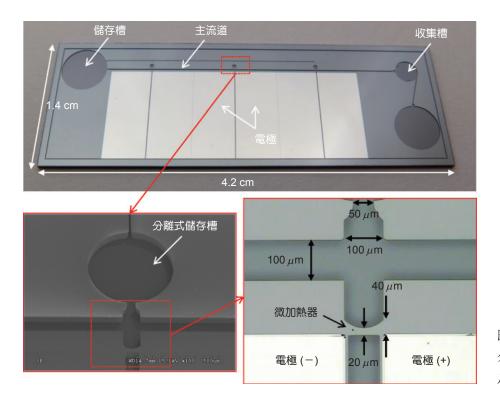
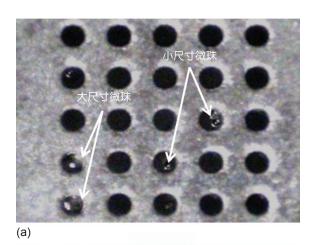



圖 16. 分離晶片之製造結果及其特徵 尺寸之標示。

槽,其中主流道的寬度為 $100 \, \mu m$,每個微加熱器的長度、邊界寬度以及頸部寬度分別為 $100 \, \mu m$ 、 $40 \, \mu m$ 以及 $20 \, \mu m$;至於微加熱器與主流道之間的距離為 $200 \, \mu m$ 。後續只要將篩選晶片置於分離晶片的暫存槽上方,便可進行特定樣本的篩選與分離檢測。

首先,在微珠的篩選實驗過程中,先將純水填滿於分離晶片的微流道及各個儲存槽,並透過晶片兩端液體的壓力差,使其流速保持在 1 mm/s 左右;之後將特定混合比例的微珠滴進篩選晶片的注入口,在不攪拌液體的情況下,便可進行微珠的篩選。實驗結果如圖 17 所示,其中圖 17(a) 顯示直徑 60 μm 的大尺寸微珠依舊卡在微貫穿孔的上方,至於直徑 20 μm 的小尺寸微珠即可順利地掉入分離晶片的暫存槽,若移除篩選晶片之後,由分離晶片的暫存槽影像也可以清楚地觀察到微珠的分佈狀況,如圖 17(b) 所示,因此透過上述的簡易製程及尺寸篩檢機制,可以有效地達成樣本篩選的功能。

在微珠的分離實驗方面,當觀察到篩選過的微珠進入主流道之後,此時便可施加電壓於微加熱器,迫使單一微珠進入特定的分離式儲存槽,典型的實驗結果如圖 18 所示,其中施加在微加熱器的

篩選後的小尺寸微珠

圖 17. (a) 不同尺寸之微珠的篩選結果及 (b) 篩選後 殘餘在暫存槽的微珠影像。

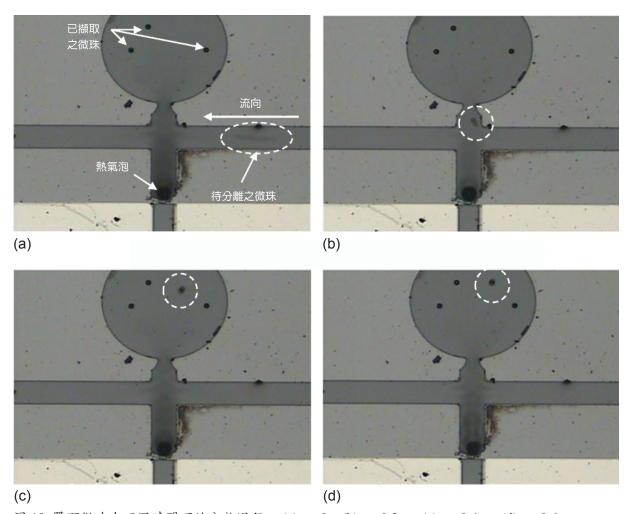


圖 18. 單顆微珠在不同時間下的分離過程: (a) t=0 , (b) t=0.2 s , (c) t=0.4 s , (d) t=0.6 s 。

電壓源為 12.5 V 的方波訊號,頻率與工作週期分別為 60 Hz 和 30%。在圖 18(a) 的影像中,主流道右側的長條黑影即為單一微珠在瞬間的移動軌跡,而此時的微加熱器即開始運作,並產生動態的熱氣泡作用力(假設此時的時間設定為零,即 t=0),該圖也可明顯的觀察出,熱氣泡產生的壓力震波會延著正前方傳遞至對面的儲存槽,因此可以改變主流道中流體的行進方向,而停留在分離式儲存槽的三顆微珠,則為先前已完成分離的實驗結果;至於圖18(b) 則顯示出,當微珠進入流道的垂直閘口時(t=0.2 秒),可明顯的看到微珠受到熱氣泡作用力的影響而轉向分離式儲存槽的入口;一旦微珠順利進入分離式儲存槽之後(t>0.4 秒),便會靜止不動,同時不會再受到閘口流場變化的干擾,如圖 18(c) 與(d) 所示,因此可順利的完成單一樣本的分離。

四、結論

本研究已開發出一種具有微閥門、微幫浦及微混合器之多功能微流體晶片,同時利用矽質之垂直式微加熱器所產生的熱氣泡,可以有效地控制微流體系統中的流場行為。此外,基於各元件在微流體晶片中的配置,透過簡單的 SOI-MEMS 微製程技術,可以同時製作出垂直式微加熱器以及高深寬比的微流道結構,因此可以提高元件的可靠度與操作性能,同時搭配積體化的製程,可提高系統整合的功能。

由實驗結果也顯示,利用熱氣泡式微閥門可穩 定地調節液體流速;熱氣泡式微幫浦可提供高穩定 度的液體流量與流速;至於熱氣泡式微混合器可藉 由增加液體與熱氣泡的接觸面積及操作時間,提高 層流液體的擾動能量,並達到均匀的混合效果。另外,由本研究初步的實驗結果,也已驗證出利用連續的熱氣泡致動方式,可以有效的改變液體的流動方向,進而改變微珠的移動軌跡,以達到單一個體的分離與篩選。未來透過優化的元件設計與不同的操作模式,便可精確地調節各類液體的流速或流量,進而操控流體中的檢測樣本,以滿足不同的生醫檢測晶片之需求。

致謝

感謝行政院國家科學委員會對於本研究相關計畫之經費補助,同時亦感謝國立交通大學奈米中心、國家奈米元件實驗室、國研院儀器科技研究中心與逢甲大學共同貴重儀器中心的協助,使得本研究得以順利進行。

參考文獻

- 1. A. Manz, N. Graber, and H. M. Widmer, *Sensors and Actuators B, Chemical*, **1** (1), 244 (1990).
- 2. M. Yamada, K. Kano, Y. Tsuda, J. Kobayashi, M. Yamato, M. Seki, and T. Okano, *Biomed Microdevices*, **9**, 637 (2007).
- 3. N. Godino, E. Comaskey, R. Gorkin III, and J. Ducree, 2012 *MEMS Conference*, Paris, France, 1017 (2012).
- J. C. Yoo, M. C. Moon, Y. J. Choi, C. J. Kang, and Y. S. Kim, *Microelectron. Eng.*, 83 (4), 1684 (2006).
- C. Zhang, D. Xing and Y. Li, *Biotechnology Advances.*, 25 (5), 483 (2007).
- 6. X. N. Jiang, Z. Y. Zhou, X. Y. Huang, Y. Yang, and C. Y. Liu, *Sensors and Actuators A*, **70** (1), 81 (1998).
- D. J. Laser and J. G. Santiago, *Journal of Micromechanics and Microengineering*, 14 (6), 35 (2004).
- 8. L. J. Yang and T. Y. Lina, *Microelectronic Engineering*, **88** (8), 1894 (2011).
- 9. Z. Yin and A. Prosperetti, *Journal of Micromechanics and Microengineering*, **15** (9), 1683 (2005).

- 10. Z. Guttenberg, H. Muller, H. Habermuller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, *Lab Chip*, 5 (3), 308 (2005).
- 11. I. Glasgow and N. Aubry, Lab on a Chip, 3 (2), 114 (2003).
- 12. G. G. Yaralioglu, I. O. Wygant, T. C. Marentis, and B. T. Khuri-Yakub, *Analytical Chemistry*, **76** (13), 3694 (2004).
- 13. D. S. Kim, S. W. Lee, T. H. Kwon, and S. S. Lee, *Journal of Micromechanics and Microengineering*, **14** (6), 798 (2004).
- 14. J. T. Yang, W. F. Fang, and K. Y. Tung, *Chemical Engineering Science*, **63** (7), 1871 (2007).
- 15. D. Fauza, Best Practice & Research Clinical Obstetrics and Gynaecology, 18, 877 (2004).
- 16. 呂淑娟, J Biomed Lab Sci, 23 (2011)
- 17. C. Tsou and C. Huang, Journal of MEMS, 18 (4), 852 (2009).

鄒慶福先生為國立清華大學動力機械 工程博士,現任逢甲大學自動控制工 程學系教授。

Chingfu Tsou received his Ph.D. in power mechanical engineering from

National Tsing Hua University. He is currently a professor in the Department of Automatic Control Engineering at Feng Chia University.

黃正翰先生為逢甲大學電機與通訊工 程博士。

Chenghan Huang received his Ph.D. in electrical and communications engineering from Feng Chia University.

曾可欣小姐為逢甲大學自動控制工程 學系碩士。

Chenghan Huang received his M.S. in automatic control engineering from Feng Chia University.